

Introduction

- Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS) affects 200,000 patients annually in the US
- Mortality 40%
- Multiple strategies improve oxygenation
- Low tidal volume ventilation (6 cc/kg) reduces mortality
- Rescue therapies are adjuncts with yet to be proven mortality improvement

Pathophysiology of ARDS Cellular-mediated injury Inflammatory cascade Oxidant-induced ✓ O₂⁻, peroxynitrates, ... Alveolar destruction Hyaline membrane formation Endothelial damage

Score	0	1	2	3	4
PaO ₂ /FiO ₂	≥ 300	225-299	175-224	100-174	< 100
CXR (quadrants)	None	1	2	3	4
PEEP	≤ 5	6-8	9-11	12-14	≥ 15
Compliance	≥ 80	60-79	40-59	20-39	≤ 19

Therapeutic Strategies for ARDS Improving Oxygenation

≺ Systemic inflammation

- Heavy sedation and paralysis (asynchrony)
- Fluid conservative hemodynamic management
- · Recruitment maneuvers and high PEEP
- Lung protective ventilation (low tidal volume)
- Prone positioning
- Glucocorticoids
- High frequency oscillatory ventilation
- Inhaled Nitric Oxide
- Extracorporeal membrane oxygenation

Therapeutic Strategies for ARDS Improving Mortality

- Only strategy that has been proven by a prospective randomized trial by ARDS Network (9% absolute risk reduction):
 - Low tidal volume (≤6 mL/kg) of predicted BW
 - Adequate PEEP levels
 - Limiting trans-pulmonary distending pressure (plateau pressure \leq 30 cm H_2O)
 - Minimize ventilator induced lung injuries: barotrauma, volutrauma and atelectrauma

Survival Benefits by Rescue Therapies Unadjusted Adjusted-Nonpulmonary causes Adjusted-Nonpulmonary causes Rescue therapy used in 6.3% patients in ARDS-Network trials RT applied in younger with severe hypoxemia & elevated MAP Survival Propensity Score Prone Therapies Rescue therapy used in 6.3% patients in ARDS-Network trials RT applied in younger with severe hypoxemia & elevated MAP Use of rescue therapy decreased over time No differences in adjusted outcomes Walkey et al Crit Care Med 2011

Physiology of Proning • First proposed by Bryan in 1974 as physiotherapy for pediatric ICU patients • Ventilation strategies in supine position tend to result in atelectasis in dependent (dorsal) more perfused regions of the lungs and shunting • In prone, shift in gravitational forces – Reduces atelectasis – Minimizes compression of lung parenchyma by heart and mediastinal structures – Alveolar ventilation is more homogeneous – Improved ventilation perfusion matching

Recent Caveat for Proning

- Swedish study 6 healthy volunteers
- Ventilation perfusion ratios with and without PEEP
- 10-cm H₂O PEEP causes redistribution of blood flow and ventilation that is different in supine vs. prone position
- Addition of PEEP in prone might be less beneficial

Petersson et al Anesthesiology 2011

Summary

- Acute hypoxemia remains major challenge in management of critically ill patients
- Lung protective strategy with low tidal volume and adequate PEEP has strongest evidence
- Prompt recognition of severe lung disease (score >3) with hypoxemia, acidosis & ↑ plateau airway pressures should trigger consideration for rescue therapies
- Ventilation in the prone position for hypoxemic respiratory failure improves O₂ and reduces VAP
- Proning appears safe in experienced, well equipped facilities with dedicated staff

Discussion

- Life-threatening hypoxemia, initial ventilatory management should include lung protective strategy, adequate PEEP & recruitment maneuver
- Proceed to prone position or HFOV if hypoxemia persists to previous regimen
- Earlier consideration of prone position for younger patients with severe hypoxemia, longer duration
- Then consider inhaled NO
- Other adjuncts: Glucocorticoids, ECMO

