Closed Loop Control of Mechanical Ventilation: State of the Art

Rich Branson

Why closed loop control?

- Reduce practice variation
- Enhance safety
- Respond to changes in patient condition which cannot be accomplished given staffing ratios and severity of illness
- Facilitate ventilator discontinuation
- Escalate therapy when required
- Provide standard of care regardless of environment and caregiver skill

What is closed loop?

- Feedback control automatic manipulation of an output variable based on the measurement of an input variable(s)
- All ventilators utilize closed loop control
- Pressure support is a simple example of closed loop control – flow is manipulated to maintain a pre-selected pressure

Current State of the Art

- Mandatory minute volume (MMV)
- Adaptive pressure control (PRVC, APV, Volume control +, AutoFlow, etc)
- Adaptive support ventilation (ASV)
- AutoMode
- Proportional Assist (PAV)
- Neurally Adjusted Ventilatory Assist (NAVA)
- SmartCarePS

On the Horizon

- Closed loop FIO2
- Closed loop FIO2/PEEP
- Complete closed loop control (Intellivent)

Adaptive Support Ventilation

- Uses body weight and Otis' WOB formula for determining variables
- Clinician sets PEEP, FIO₂, and Pmax
- Ventilator algorithm chooses initial settings and modifies settings on a breath to breath basis
- · Level of support determines weaning

Background

- Oxygen represents 20%-30% of the weight of supplies for transport.
- Liquid oxygen provides the greatest volume but has storage, position, and off gassing issues.
- Cylinders are heavy and carry an explosive risk.
- Reducing oxygen usage has potential advantages.

Study Goals

- Closed loop control of inspired oxygen concentration (FiO₂) using arterial oxygen saturation (SpO₂) can
 - Reduce oxygen usage during transport.
 - Reduce the number of low SpO₂ conditions.
 - Provide normoxemia vs. hyperoxemia.

Clinical Implications

- Reduced oxygen usage will reduce the weight and cube of required oxygen stores.
- Prevention of hypoxemia will improve outcome (a single episode of hypoxemia in closed head injury is associated with negative outcomes.)
- Closed loop can provide appropriate oxygenation for the patient from injury to definitive care.

Description

- FiO₂ automatically adjusted based on SpO₂, SpO₂-target difference and trends in SpO₂.
- SpO₂ target is 94% (adjustable).
- If $SpO_2 \le 88\%$, FiO_2 increases to 1.0.
- A combination of fine and coarse control.
- If SpO₂ signal is lost, FiO₂ remains constant.
- If FiO₂ increases > 10%, an alert is provided.

Safety & Efficacy

- Safety Prevention of hypoxemia (SaO₂ ≤ 88%)
- Efficacy Ability of controller to maintain SaO_2 target (94% \pm 2%)
- Oxygen conservation

Closed Loop FiO₂/SpO₂

- Total enrollment n = 95
- Gender 84 men, 16 women
- Ethnicity 73 Caucasian, 21 African-American, 1 Asian
- Mean age 35.3 \pm 11.7
- Mean Glasgow Coma Score -10.8 ± 3.9
- Mean Injury Severity Score -34 ± 13
- Mean APACHE II -20 ± 7

FiO₂ Changes

- Closed loop 95.2 changes per 4-h period
- Control 4.4 changes per 4-h period
- 95 ± 49 vs. 4.46 ± 2 (p < 0.0001)

Closed Loop FIO2 in Neonates

- Hypoxemia and hyperoxemia have known severe consequences in the newborn
- Ideal environment for closed loop control
- NICU staff cannot keep up with the number of changes required to maintain normoxemia
- Current investigations of a PID controller designed by Claure known as CLiO

Closed Loop FIO2 in Neonates

Automated Adjustment of Inspired Oxygen in Preterm Infants with Frequent Fluctuations in Oxygenation: A Pilot Clinical Trial

Nelson Claure, MSc, PhD, Carmen D'Ugard, RRT, and Eduardo Bancalari, MD

Objective To assess the efficacy of a system for automated fraction of inspired oxygen (FiO₂) adjustment in maintaining oxygen saturation (SpO₂) within an intended range in preterm infants with sportaineous fluctuations in SpO₂. Study design Stoken infants (selational age, 24 ± 14 weeks; birth weight, 26 ± 14 4 gea, 93 ± 15 days) with frequent hypoxemia episodes underwent two 4-hour periods of FiO₂ adjustment by clinical personnel (routine) and the automated system (automated system)). Results Compared with the routine period, the percent time within intended SpO₂ range (88%–95%) increased during the automated period (58% ± 10% versus 45% ± 10% versus 35% ± 5% (P< 0.01) and 3% ± 5% versus 15% ± 9% (P< 0.01) responsible to the system of the syst

Future

- Continued development
- Regulatory pathway? 510k or PMA?
- Thermostat for oxygen
- Regulatory burden may never be recovered
- How much would you be willing to pay for that?

Ventilation			
vericilation			
All patients (n= 50)	ASV	IntelliVent®	р
Cstat (mL/cmH ₂ 0)	40 <u>+</u> 16	37 <u>+</u> 12	0,191
Rinsp (cmH ₂ O/L/s)	17 <u>+</u> 4	17 <u>+</u> 5	0,970
RCexp	0.7 ± 0.1	0.6 ± 0.1	0,343
%MV (%)	128 <u>+</u> 27	114 <u>+</u> 29	0,003
V _T /PBW (mL/kg)	8,4 + 0,8	8,1 + 0,8	0,003
RR (breath/min)	15 <u>+</u> 3	14 <u>+</u> 3	<0,001
Ppeak (cmH ₂ 0)	29 <u>+</u> 8	26 <u>+</u> 6	<0,001
Pplat (cmH₂0)	<u>24 + 6</u>	<u>22 + 6</u>	0,016
PEEP (cmH ₂ O)	10 ± 4	9 ± 5	0,015
FiO ₂ (%)	45 <u>+</u> 18	37 <u>+</u> 13	<0,001
рН	7,30 <u>+</u> 0,08	7,28 <u>+</u> 0,10	0,078
PaO ₂ (mmHg)	102 <u>+</u> 34	91 <u>+</u> 24	0,064
PaO ₂ /FiO ₂ (mmHg)	250 <u>+</u> 107	263 <u>+</u> 94	0,124
PaCO ₂ (mmHg)	38 <u>+</u> 7	41 <u>+</u> 10	0,024
EtCO ₂ (mmHg)	39 <u>+</u> 6	42 <u>+</u> 6	0,002
SaO ₂ (%)	96 <u>+</u> 3	95 <u>+</u> 4	0,018