

What You Should Get:

Provide improved medical care to ARDS patients.

Review of current literature regarding physiologic effects, support devices, complications and management of prone positioning.

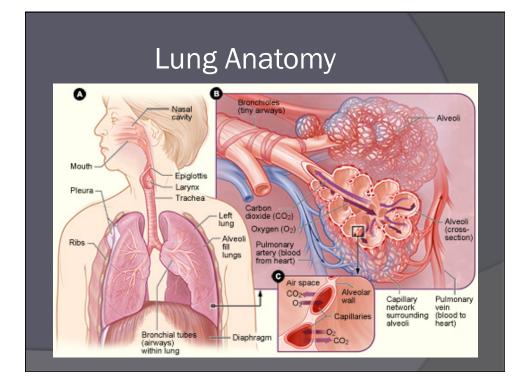
Show scientific evidence pertinent to this case sort; provide potential practice paradigm for future improvement in patient care. Take away more from the bedside of your proned patients.

Be able to discuss risks and benefit of proning to family members, nursing staff, and other practitioners.

Recognize variation in practitioners' comfort levels with this modality and be able to have evidence based discourse regarding outcomes.

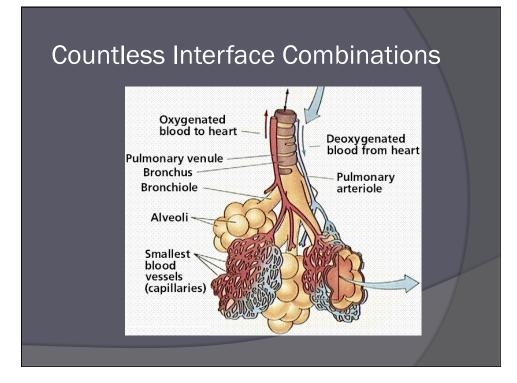
THE LUNG IS A <u>UNIT</u> CREATED OF:

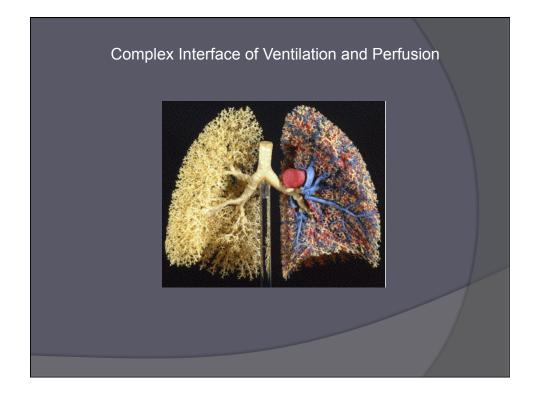
GAS

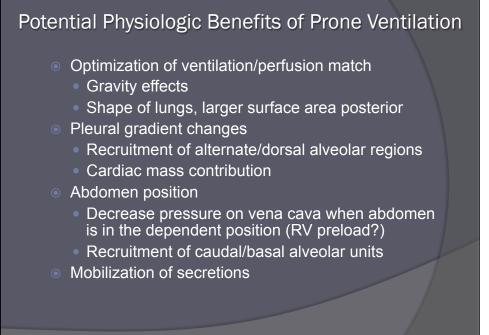

- Inspired
- Expired

CONDUITS

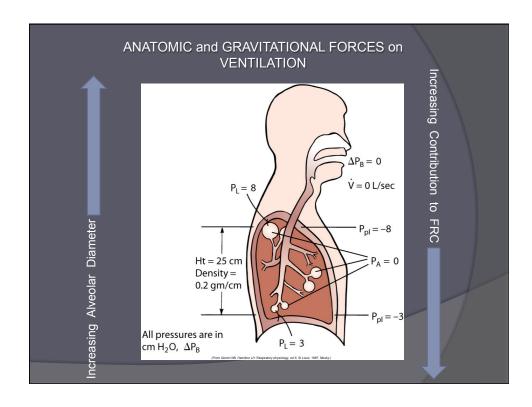
- Anatomic dead spaces
- Nares to terminal bronchioles
- PARENCHYMA
 - Supportive
 - Interface: Alveolar surface area

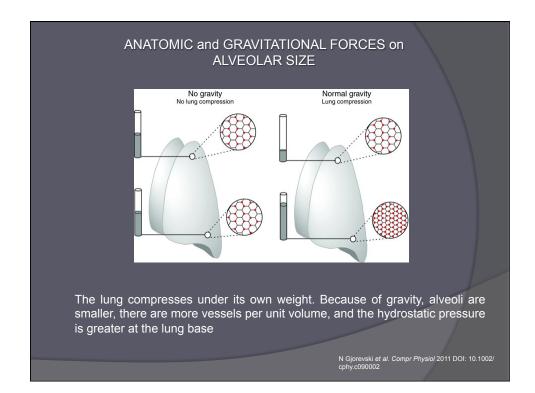

BLOOD

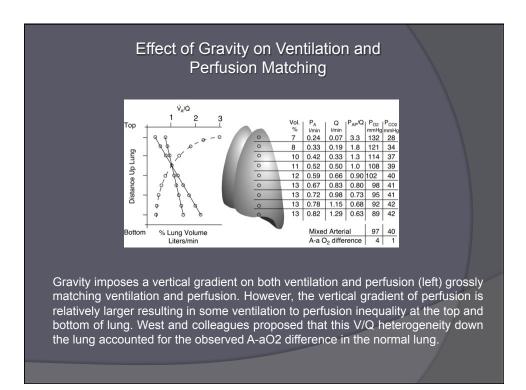

- Supportive, bronchial flow
- Gas exchange, pulmonary flow

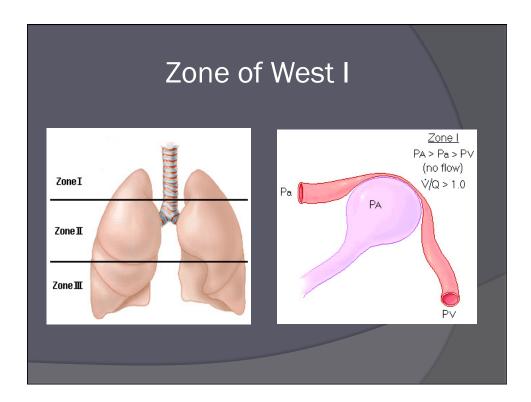

Or Is It?

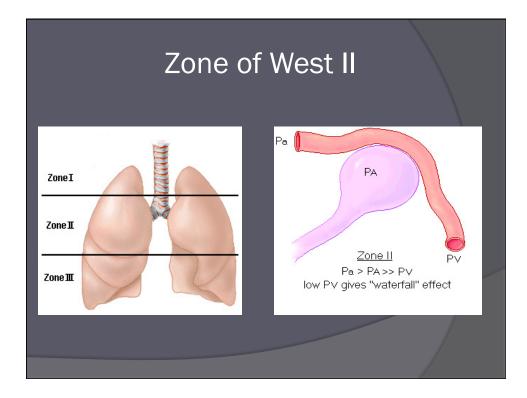
- "The Lung" is a myriad of decremental functional units.
- Its "average" function as we note by typical physiologic testing or observations during mechanical ventilation is therefore a clinical pitfall.
- There is a potential continuum of VQ within *any* theoretical subunit, even to neighboring alveoli.

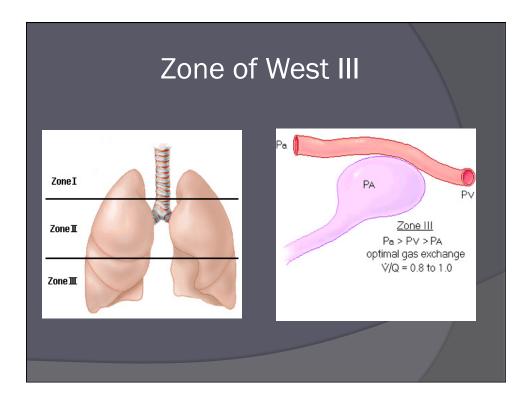


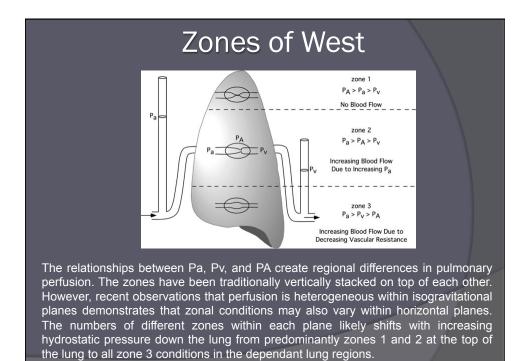


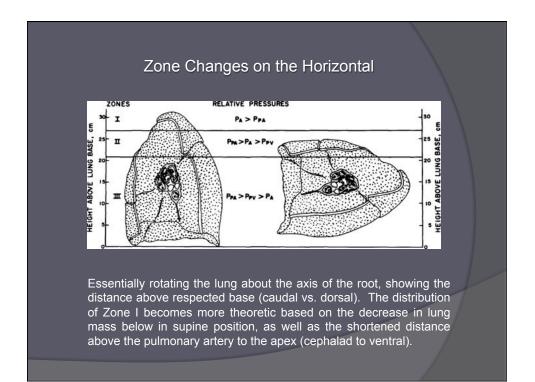

<section-header><section-header><list-item><list-item><list-item>

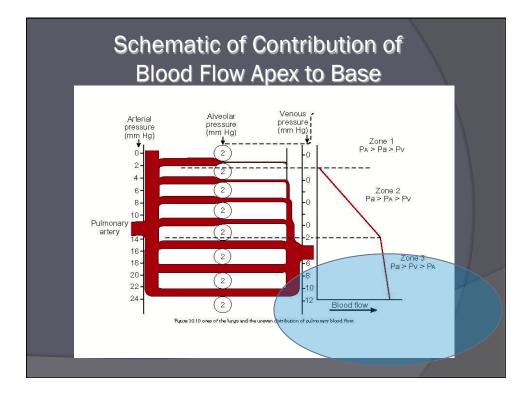


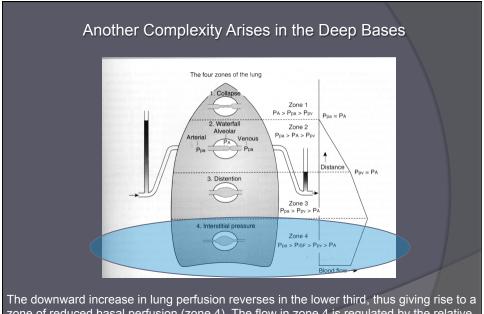

Pelosi, 2002, J European Resp Soc, 20(4)

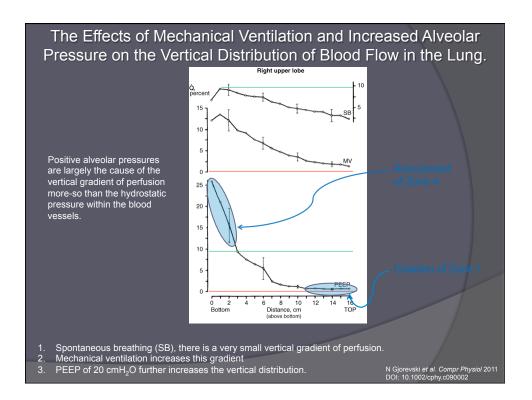


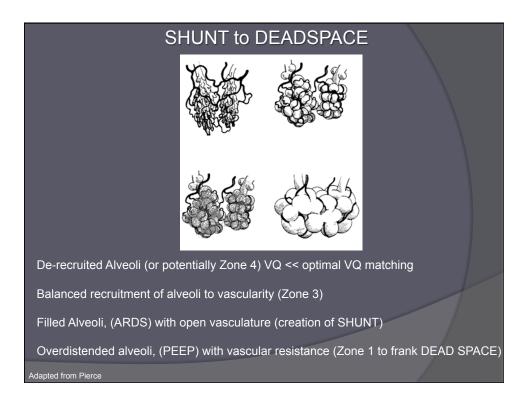


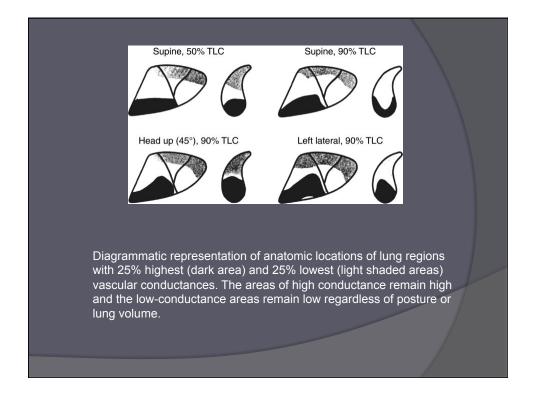


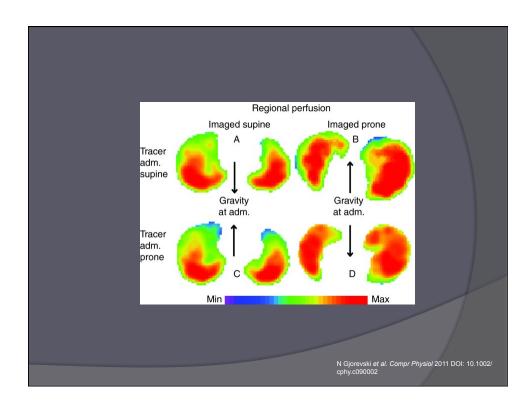




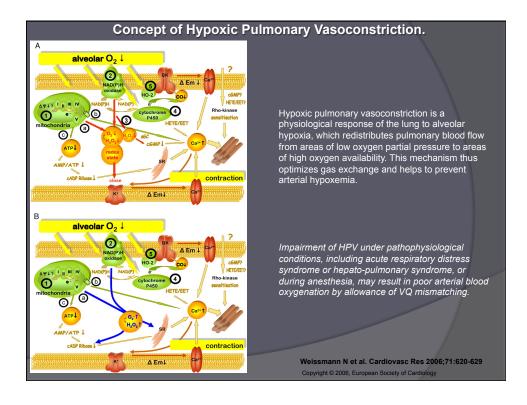


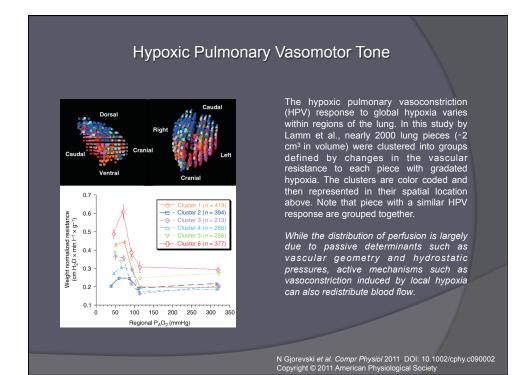


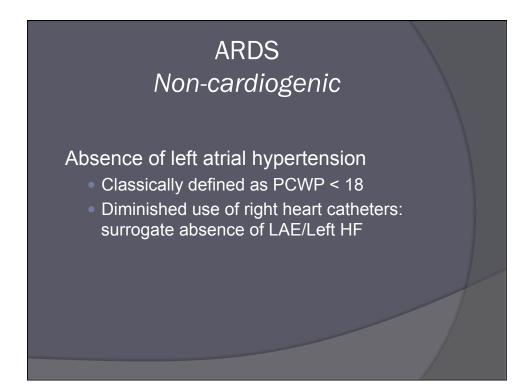

The downward increase in lung perfusion reverses in the lower third, thus giving rise to a zone of reduced basal perfusion (zone 4). The flow in zone 4 is regulated by the relative increased resistance in extra-alveolar vessels, the diameter of which is determined by lung volume, perivascular interstitial pressure, and vasomotor tone.

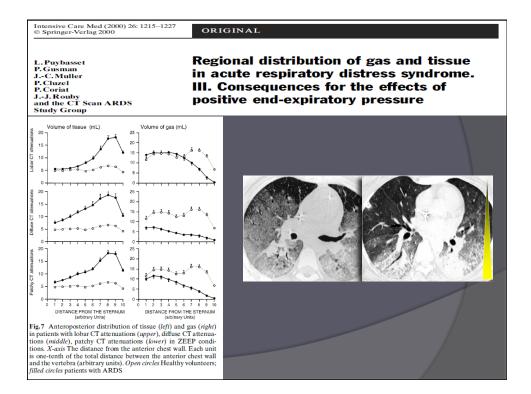

	The Four Lung Zones								
	PRESSURES IN ZONES		ALVEOLAR CAPILLARY FLOW	FLOW DEPENDS ON :					
	I PA>PPA>PPV	PPA PA PPV	NONE TO LOW	PULSATILITY (FLOW CONTINUES THROUGH CORNER VESSELS)					
	Ш Ррд> Р _д > Рру		INTERMEDIATE	Ppa - Pa (STARLING RESISTOR)					
	m PPA>PPV >PA		нісн	Рра – Рру					
	IV Ppa>Ppv>Pa ^P interstitial		INTERMEDIATE	RESISTANCE IN EXTRA-ALVEOLAR VESSELS					
Potential Physiol	ogy of "Zone	4":							
 increase in interstitial pressure at lung bases closure of small airways at low lung volumes increased extra-alveolar vascular resistance 									
With the relative increase in Pa there is creation either zone 1 or zone 2 conditions									

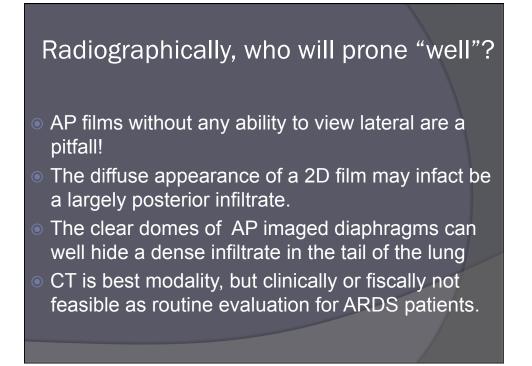


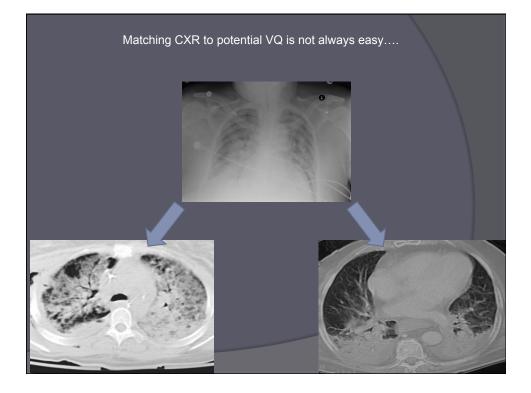

Theory vs. Practicality						
ALVEOLAR CONTINUUM	VQ	RESULT				
COMPLETE OVERDISTENTION	∞	DEAD SPACE				
ZONE1	>>1	Inefficient Gas Exchange				
ZONE2	>0.8	Non-optimal Gas Exchange in favor of ventilation				
ZONE3	0.8	Optimal Exchange				
ZONE4	<0.8	Non-optimal Gas Exchange in Favor of perfusion				
COMPLETE FILLING	0	SHUNT				

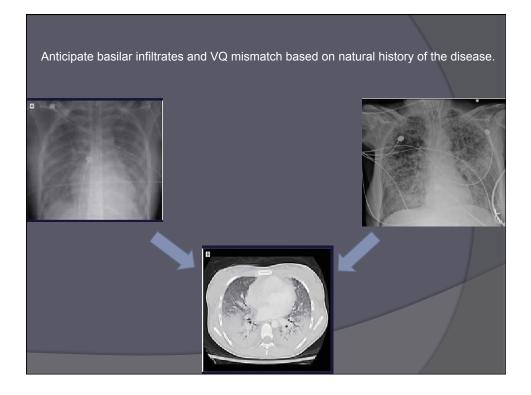


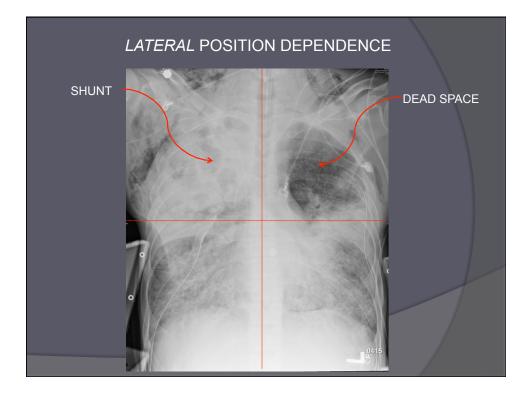


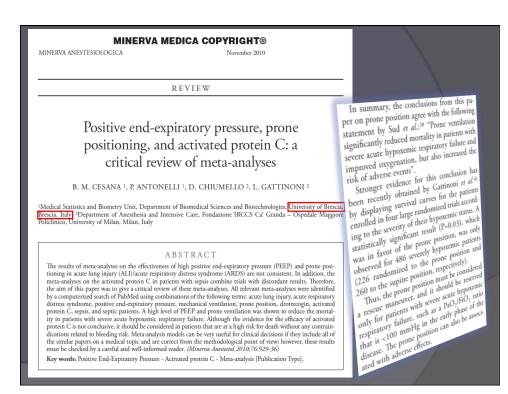



<image>




American-European Consensus Conference on ARDS Acute Lung Injury Acute Respiratory Distress Syndrome PaO₂/FiO₂ <300 regardless</p> PaO₂/FiO₂ <200 regardless of PEEP of PĒEP Bilateral Infiltrates on a Bilateral Infiltrates on a Frontal Frontal Chest Radiograph Chest Radiograph Pulmonary Artery Wedge - Pulmonary Artery Wedge <18 mmHg <18 mmHg





		chanical Ventilation in ARDS* ate-of-the-Art Review			
		y D. Girard, MD; and Gordon R. Bernard, MD, FCCP			
Table 1— <i>Ra</i>	monduce of candid and safety of va- volume vonilati. ARDS as its tite survival. High y mortinods of vort Although not sp underhough not sp and should be u key works anter volume. Albreviations AI Pressure To Ownie error autointons AI Pressure To Ownie respiratory system	Induces an essential comparement of the care of putterns with unduced variatical definition by taks have many how resulted rock on $(-1)^{-1}$ and $(-1)^{-1}$ and $(-1)^{-1}$ and $(-1)^{-1}$ and $(-1)^{-1}$ and $(-1)^{-1}$ and $(-1)^{-1}$ and $(-1)^{-1}$ and $(-1)^{-1}$ and $(-1)^{-1}$ and $(-1)^{-1}$ have in $(-1)^{-1}$ and $(-1)^{-1}$ and $(-1)^{-1}$ and $(-1)^{-1}$ and $(-1)^{-1}$ have in $(-1)^{-1}$ and $(-1)^{-1}$ and $(-1)^{-1}$ and $(-1)^{-1}$ and $(-1)^{-1}$ have in $(-1)^{-1}$ and $(-1)^{-1}$ and $(-1)^{-1}$ and $(-1)^{-1}$ and $(-1)^{-1}$ have in $(-1)^{-1}$ and $(-1)^{-1}$ and $(-1)^{-1}$ and $(-1)^{-1}$ and $(-1)^{-1}$ and $(-1)^{-1}$ have in $(-1)^{-1}$ and $(-1)^{-1}$ and $(-1)^{-1}$ and $(-1)^{-1}$ and $(-1)^{-1}$ and $(-1)^{-1}$ and $(-1)^{-1}$ have in $(-1)^{-1}$ and $($	abanding the efflowey of ARDS. Low tidel in all of ARDS, Low tidel in all of ARDS, Low tidel in all of the ARDS of ARDS, the neutron and prone spacemia, but these proven investigation of the law proven investigation are proven presiding tidel Decaded Englishment (ARDS) and ARDS of the Decaded Englishment (ARDS) and ARDS of t	ment of	
Study	Patients, No.	ARDS*	Mortality Rates†	p Value	
	53	< 6 mI Ag ABW, VT. < 20 cm H O Pdriving	38% vs 71% t		
Amato et al ¹⁰ Stewart et al ¹¹	53 120	$\leq 6 \text{ mL/kg ABW}; \text{Vr}; < 20 \text{ cm H}_2\text{O} \text{ Pdriving}$ $\leq 8 \text{mL/kg IBW}; \text{Vr}; \leq 30 \text{ cm H}_2\text{O} \text{ Polat}$	38% vs 71%‡ 50% vs 47%	0.001	
Amato et al ¹⁰		$\leq 6 \text{ mL/kg ABW; VT; } < 20 \text{ cm H}_2\text{O Pdriving}$ $\leq 8 \text{mL/kg IBW; VT; } \leq 30 \text{ cm H}_2\text{O Pplat}$ $6-10 \text{ mL/kg IBW; VT; } 25-30 \text{ cm H}_2\text{O Pplat}$	38% vs 71%‡ 50% vs 47% 47% vs 38%§		
Amato et al ¹⁰ Stewart et al ¹¹	120	≤ 8mL/kg IBW; VT; ≤ 30 cm H ₂ Ô Pplat	50% vs 47%	0.001 0.72	
Amato et al ¹⁰ Stewart et al ¹¹ Brochard et al ¹²	120 116	\leq 8mL/kg IBW; Vr; \leq 30 cm H ₂ O Pplat 6–10 mL/kg IBW; Vr; 25–30 cm H ₂ O Pplat	50% vs 47% 47% vs 38%§	0.001 0.72 0.38	
Amato et al ¹⁰ Stewart et al ¹¹ Brochard et al ¹² Brower et al ¹³ ARMA ¹⁴ Derdak et al ³²	120 116 52	$ \leq 8mLAg IBW; VT; \leq 30 \text{ cm } H_2O \text{ Pplat} \\ 6-10 mLAg IBW; VT; 25-30 \text{ cm } H_2O \text{ Pplat} \\ \leq 8 mLAg PBW; VT; \leq 30 \text{ cm } H_2O \text{ Pplat} \\ \leq 6mLAg PBW; VT; \leq 30 \text{ cm } H_2O \text{ Pplat} \\ HFOV $	50% vs 47% 47% vs 38%§ 50% vs 46%	0.001 0.72 0.38 0.61	
Amato et al ¹⁰ Stewart et al ¹¹ Brochard et al ¹² Brower et al ¹³ ARMA ¹⁴ Derdak et al ³² Bollen et al ³³	120 116 52 861 148 61	$\leq 8 mLAg_1^2$ BW: Vr; ≤ 30 cm H ₂ Ô Pplat 6-10 mLAg BW: Vr; 22-30 cm H ₂ Ô Pplat $\leq 8 mLAg$ PBW: Vr; $\leq 30 m H_2$ Ô Pplat $\leq 6 mLAg$ PBW; Vr; $\leq 30 cm H_2$ Ô Pplat HFOV HFOV	50% vs 47% 47% vs 38%§ 50% vs 46% 31% vs 40% 37% vs 52% 43% vs 33%	0.001 0.72 0.38 0.61 0.007 0.10 0.59	
Amato et al ¹⁰ Stewart et al ¹¹ Brochard et al ¹² Brower et al ¹³ ARMA ¹⁴ Derdak et al ³² Bollen et al ³³ ALVEOLI ³³	120 116 52 861 148 61 549	$\leq \operatorname{Sml Agt} [BW, Vr; \leq 30 \operatorname{cm} H_{4}O \operatorname{Pplat}^{\circ}$ $6 \operatorname{-10} \operatorname{mLAg} [BW, Vr; \leq 30 \operatorname{cm} H_{4}O \operatorname{Pplat}$ $\leq 8 \operatorname{mLAg} [BW; Vr; \leq 30 \operatorname{cm} H_{4}O \operatorname{Pplat}$ $\leq \operatorname{6ml Agt} [BW; Vr; \leq 30 \operatorname{cm} H_{4}O \operatorname{Pplat}$ HFOV HFOV HFOV HFOV	50% vs 47% 47% vs 38% 50% vs 46% 31% vs 40% 37% vs 52% 43% vs 33% 28% vs 25%	0.001 0.72 0.38 0.61 0.007 0.10 0.59 0.48	
Amato et al ¹⁰ Stewart et al ¹¹ Brochard et al ¹² Brower et al ¹³ ARMA ¹⁴ Dordak et al ⁵² Bollen et al ⁵³ ALVEOLI ³⁵ Villar et al ⁵⁶	120 116 52 861 148 61 549 103	$ \leq 8mLA_g^{-1} BW, \forall r_1 \leq 30 \text{ om } H_Q^{-0} Pplat \leq 6-10 mLA_g^{-1} BW, \forall r_1 \geq 5-30 \text{ cm } H_Q^{-0} Pplat \leq 8 mLA_g^{-1} PBW, \forall r_1 \leq 30 \text{ cm } H_Q^{-0} Pplat \leq 6mLA_g^{-1} PBW, \forall r_1 \leq 30 \text{ cm } H_Q^{-0} Pplat HFOV HFOV HFOV High-PECP protocol \leq -8 \text{ mLA}_g^{-1} PBW, \forall r_1 PEEP \text{ of } Pflex + 2 \text{ cm } H_Q^{-0} $	50% vs 47% 47% vs 38% 50% vs 46% 31% vs 40% 37% vs 52% 43% vs 33% 28% vs 25% 34% vs 56%	0.001 0.72 0.38 0.61 0.007 0.10 0.59 0.45 0.04	
Amato et al ¹⁰ Stewart et al ¹¹ Brochard et al ¹² Brower et al ¹³ ARMA ¹⁴ Derdak et al ³² Bollen et al ³³ ALVEOLI ³⁵	120 116 52 861 148 61 549	$\leq \operatorname{Sml Agt} [BW, Vr; \leq 30 \operatorname{cm} H_{4}O \operatorname{Pplat}^{\circ}$ $6 \operatorname{-10} \operatorname{mLAg} [BW, Vr; \leq 30 \operatorname{cm} H_{4}O \operatorname{Pplat}$ $\leq 8 \operatorname{mLAg} [BW; Vr; \leq 30 \operatorname{cm} H_{4}O \operatorname{Pplat}$ $\leq \operatorname{6ml Agt} [BW; Vr; \leq 30 \operatorname{cm} H_{4}O \operatorname{Pplat}$ HFOV HFOV HFOV HFOV	50% vs 47% 47% vs 38% 50% vs 46% 31% vs 40% 37% vs 52% 43% vs 33% 28% vs 25%	0.001 0.72 0.38 0.61 0.007 0.10 0.59 0.48	

www.chestpubs.	org		CHEST / 137 / 6	8 / JUNE, 2010 1437	
	CHEST	Postgrad	luate Educati	on Corner	
		CONTEM	PORARY REVIEWS IN CRITI	CAL CARE MEDICINE	
	Severe Hypox	emic Respir	ratory Failure	Э	
	51				
	Part 2—Nonventilat	ory Strategies			
	Suhail Raoof, MD, FCCP; K	eith Goulet, MD; Adeba	iyo Esan, MD;		In a post hoc analysis of the patients with A
	Dean R. Hess, PhD, RRT, FO	CCP; and Curtis N. Sess	ler, MD, FCCP		In a post hoc analysis of the patients with Cattinoni et al ⁶⁸ found a significantly lower is the patients in the quartile w
					Gattinoin contraste in the patients in the quarter
					Gattinom et al local statistical de la constant de
	Table 1—Summary of	Four Randomized Trial	s on Prone Position		mortality rate in the P^{-m} ($\leq 88 \text{ mm Hg} \cdot 25$). lowest Pao_FIo_ratio ($\leq 88 \text{ mm Hg} \cdot 25$). 47.2%; relative risk of death 0.49, 95% CI.02 47.2%; relative risk of death 0.49, 95% cI.02
	Gattinoni et al ⁶⁸	Guerin et al ⁶⁰	Mancebo et al ⁷⁰	Taccone et al ⁷¹	lowest Pao/Pr02 to the second
No. of patients	304	791	136	343	ventilated in the prone posted with similar re- supine position. When pooled with similar re- supine position. When pooled with Mancebo et al. ⁷⁰ mortality was reduced in Mancebo et al. ⁷⁰ mortality as reduced with inclusion of the pooled with the pool
Prone	152	413	76	168	supine positional mortality was reduced Mancebo et al. ⁷⁰ mortality was reduced with Prone positioning has been associated with what include pressure sores, endorab
Supine	152	378	60	174	Mancebo et al. Prone positioning has been associated with cations that include pressure sores, endotrach cations that include pressure sores, endotrach cations that include pressure sores, endotrach cations that include pressure sores are an endotracted by the solution of the solution of the pressure of the solution
Enrollment criteria	ALI	ALI	ARDS	ARDS	acitioning national cores endourated
D.d.	Pao ₂ /Fio ₂ < 300	Pao ₂ /Fio ₂ <300	$Pao_{g}/Fio_{g} < 200$	Pao ₂ /Fio ₂ <200	Prone Postinclude pressure solution, loss of
Daily proning Planned	> 6 h/d	> 8 h/d	20 h/d	20 h/d	cations that is an lanned extra take of seda
Actual	> 0 1/d 7 h/d	> 8 h/d	20 h/d 13 h/d	18-20 h/d	hetruction, unput increased used Berna
Number of days	10 d	4 d	10 d	28 d	Prone positioning has been assee ations that include pressure sores; endersto obstruction, unplanned estubation, loss venous access, and increased use of sed venous access, and increased use of a complete these limitations; Grand and Rema Despite these limitations; Constant and the prove positioning and the duded that prone positioning and the second be dort-term theory for the second be dort-term theory for the second be dort-term theory in the forther the prove the second second second second second terms of the second second second second second terms of the second second second second second second terms of terms of terms of terms of terms of terms of terms terms of terms of terms of terms of terms of terms of terms of terms terms of terms of terms of terms of terms of terms of terms of terms terms of terms of terms terms of terms of terms terms of terms of
Oxvgenation	Improved	Improved	Improved	Improved	venous access, and the Grant and the co Despite these limitations Grant and the co cluded that prone positioning may be re- a reasonable short-term therapy for pairs a reasonable short-term therapy for the property of the comparison of the comparison of the property of the comparison of the comparison of the property of the comparison
VAP	Not assessed	Reduced	Not reduced	Not assessed	venous Despite these limitates solutioning may cluded that prone positioning may for pair a reasonable short-term therapy for offer a reasonable short-term therapy for offer a RDS requiring high FIO ₂ > 0.00 in light of re ARDS requiring high FIO ₂ > 0.00 in light of re a unressure (> 30 cm H_O). In light of re- au pressure (> 30 cm H_O).
Primary end point	10-d mortality	28-d mortality	ICU mortality	28-d mortality	cluded that I short-term (>0.6) of etc.
Prone vs supine	21.1% vs 25%	32.4% vs 31.5%	43% vs 58%	31.0% vs 32.8%	reasonable sine high FIO1 In light of to
	RR, 0.84	RR, 0.97	RR, 0.74	RR, 0.97	a requiring 20 cm H O/. in post
	95% CI, 0.56-1.27	95% CI, 0.79-1.19	95% CI, 0.53-1.04	95% CI, 0.84-1.13	ARDS acsure (>30 cm end that protients w
	P = .50	P = .77	P = .12	P = .72	Despite an approver possible relation of the cluded that prone possible relation there are assonable short-term therapy too for even a reasonable short-term theory for (>10 km g more possible for (>
ALI = acute lung inji	ıry; RR = relative risk; VAP =ventilator	-associated pneumonia.			cluded disk short-terine (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
					ansidered in poremia.
					a reasonautor program a proving a reasonautor program of the reasonautor of the reasonaut
					rena

Decrease in Paco₂ with prone position is predictive of improved outcome in acute respiratory distress syndrome*

Luciano Gattinoni, MD, FRCP; Federica Vagginelli, MD; Eleonora Carlesso, MSC; Paolo Taccone, MD; Valeria Conte, MD; Davide Chiumello, MD; Franco Valenza, MD; Pietro Caironi, MD; Antonio Pesenti, MD; for the Prone-Supine Study Group

Crit Care Med 2003 Vol. 31, No. 12

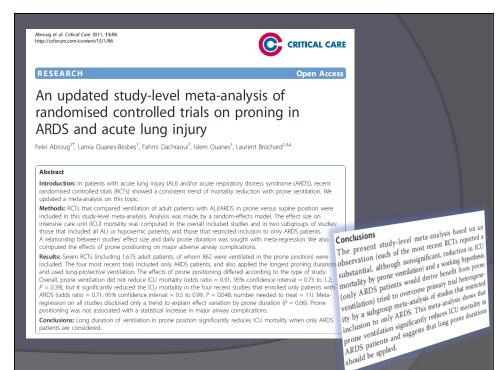
Objective: To determine whether gas exchange improvement in response to the prone position is associated with an improved outcome in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS).

Design: Retrospective analysis of patients in the pronation arm of a controlled randomized trial on prone positioning and patients errolled in a previous pilot study of the prone position. Setting: Twenty-eight Italian and two Swiss intensive care

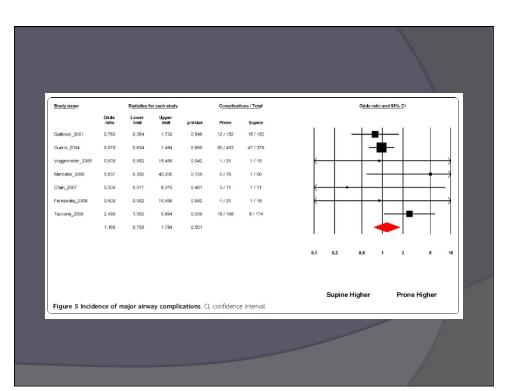
units.

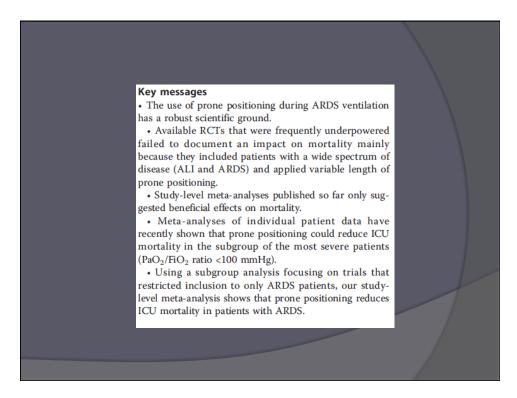
Patients: We studied 225 patients meeting the criteria for ALI or ARDS.

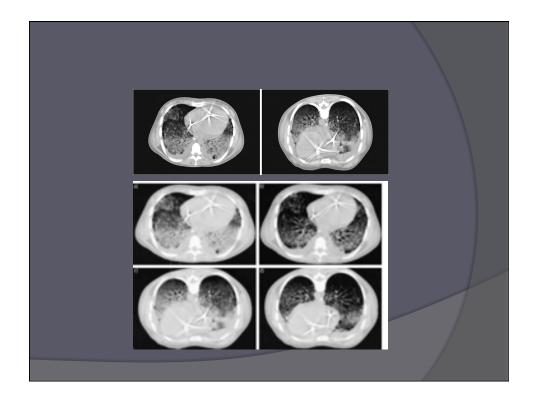
Interventions: Patients were in prone position for 10 days for 6 hrs/day if they met ALI/ARDS criteria when assessed each morn-ing. Respiratory variables were recorded before and after 6 hrs of


Ing. nespiratory variables were recorded before and after 6 ms of pronation with unchanged vertilatory settings. *Measurements and Main Results*: We measured arterial blood gas alterations to the first pronation and the 28-day motality rate. The independent risk factors for death in the general population were the Pao₂/Fio₂ ratio (odds ratio, 0.992; confidence interval, new participation of the setting of the settin $0.986-0.998), the minute ventilation/Paco_ ratio (odds ratio, 1.003; confidence interval, 1.000-1.006), and the concentration of$

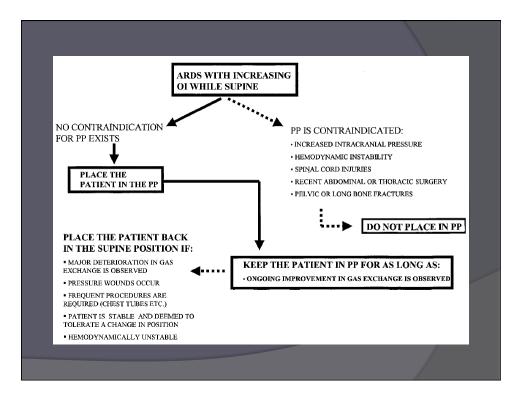
plasma creatinine (odds ratio, 1.395; confidence interval, 1.116–1.720). Pao₂ responders (defined as the patients who increased their Pao₄/Fo₂ by \geq 20 mH g, 150 patients, mean increase of 10.6 ± 61.6 mm Hg [13.4 ± 0.2 kPa]) had an outcome similar to


100.6 ± 61.6 mm Hg [13.4 ± 8.2 kPa]) had an outcome similar to the nonresponders (59 patients, mean decrease -6.3 ± 23.7 mm Hg [-0.8 ± 3.2 kPa]; mortality rate 44% and 46%, respectively; relative risk, 1.04; confidence interval, 0.74-145, p = £65). The Pace, responders (defined as patients whose Pace, decrement ≥ 1 mm Hg, 94 patients, mean decrease -6.0 ± CONCLUSIONS ≥ 0.8 kPa]; mortality rate 35.1% and 52.2%, see the second second second second risk, 1.48; confidence interval, 1.07-2.05, p = .0 *Conclusion:* ALI/ARDS patients who responders to variables were not collected because to *Conclusion:* ALI/ARDS patients who responders to variables were not collected because to an ing with reduction of their Pace, show an increase ensure that a multiple-center trial is the rays. Increase efficiency of alverals resultat sible we have to keep variables to a min.


Conclusion: ALI/ARDS patients who respond to ing with reduction of their Paco₂ show an increase days. Improved efficiency of alveolar ventilati silo we have not collected train is or physiologic deadspace ratio) is an important itents who will survive acute respiratory failure. Ner Wones: acute lung injury: acute respiratory drome; prone position; carbon dioxide exchange modified, the patients who are due to respondent with a dearease in modified, the patients who are due to paco₂ had a better outcome the index energy paco₂ had a better outcome the paco₂ change are positioning with a dearease in one index energy and a bible. However, a single fact we modified, the patients who are due to paco₂ had a better outcome the paco positioning the male some are positioning to male prime are paco positioning the male prime are paced over botters and a bible rotering in pace in the prime position of the pace of the pace are paced and a patient of the pace opositioning the male prime paced and a patient pace-positioning the male part outcome and a bible rotering in lower botters and a bible rotering pace opositioning the male part outcome and a bible rotering pace opositioning the paced paced paced paced on the paced paced paced paced paced paced on the paced paced paced paced paced paced opositioning the male paced paced paced opositioning the male paced paced paced paced opositioning the male paced paced paced paced opositioning the male paced paced paced paced paced opositioning the male paced paced paced paced opositioning the male paced paced paced paced paced opositioning the male paced paced paced paced paced paced opositioning the male paced pac


21

Group by	Study name	Sta	atistics fo	or each s	study		Od	ds rat	tio an	d 95%	сі	
Patient Type		Odds ratio	Lower limit	Upper limit	p-Value							
ALI/ARDS	Gattinoni_2001	1,111	0,709	1,742	0,646	1	1		-	-1		1
ALI/ARDS	Guerin_2004	1,045	0,775	1,410	0,772				圕	-		
ALI/ARDS	Voggenreiter_2005	0,267	0,025	2,815	0,272	k-	+•	_	-			
All studies with ALI/ARDS		1,049	0,819	1,344	0,706				٠	÷		
ARDS	Mancebo_2006	0,548	0,276	1,087	0,085		1 -	-	-			
ARDS	Chan_2007	0,593	0,078	4,498	0,613	K-	+		+		_	
ARDS	Fernandez_2008	0,554	0,157	1,952	0,358		+	-	+			
ARDS	Taccone_2009	0,810	0,530	1,238	0,330			1	-			
All studies with ARDS		0,708	0,503	0,997	0,048							
Overall		0,916	0,750	1,120	0,392				٠			
						0.1	0.2	0.5	1	2	5	10


General Principles for Effective Prone Positioning in ALI/ARDS

Conditions for which prone positioning could be beneficial:

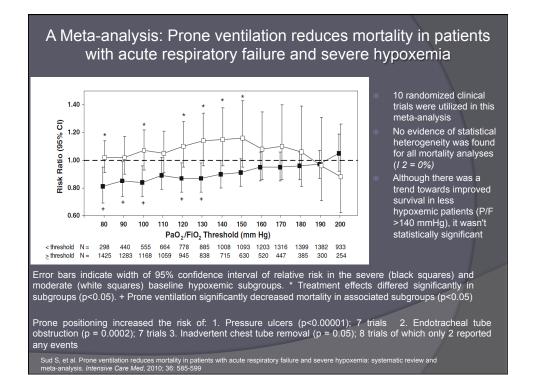
- Moderate to severe ALI/ARDS and no contraindications
- When high values for ventilatory pressure, positive endexpiratory pressure (PEEP), and FiO₂ are needed to maintain adequate arterial oxygen pressure

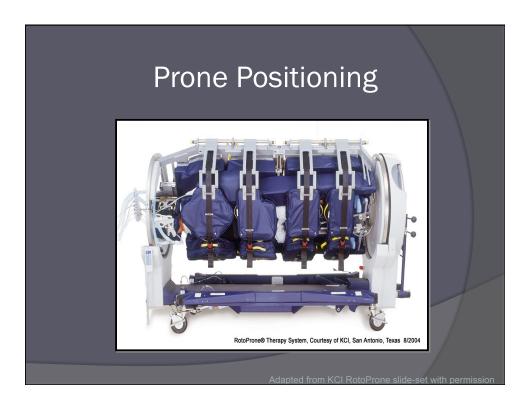
ii J, et al. Ventilatory management of acute respiratory distress syndrome: a consensus of two. Crit Care Med, 2004; 32(1): 250-255 S, et al. Effect of mechanical ventilation in the prone position on clinical outcomes in patients with acute hypoxemic respiratory failure

- >10 cm H₂O PEEP at FiO₂ of >0.6 to maintain oxygen saturation at >90%
- Tidal thoracic compliance (tidal volume/[plateau pressure total PEEP]) of <0.040 L/cm H₂O ¹
- Patients with a P/F <140²

A Meta-analysis: Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia Objective

To determine effects of prone versus supine ventilation in AHRF (acute hypoxemic respiratory failure) and severe hypoxemia [partial pressure of arterial oxygen (PaO(2))/inspired fraction of oxygen (FiO(2)) <100 mmHg] compared with moderate hypoxemia (100 mmHg </= PaO(2)/FiO(2) </= 300 mmHg).


Methods


- Systematic review and meta-analysis.
- Electronic databases (to Nov 2009) and conference proceedings searched.
- Ten trials (N = 1,867 patients) met inclusion criteria; most patients had acute lung injury.

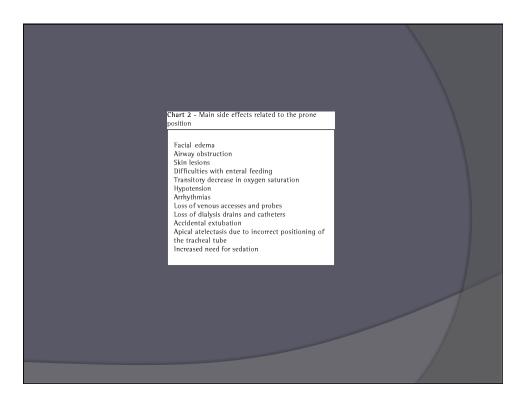
Results

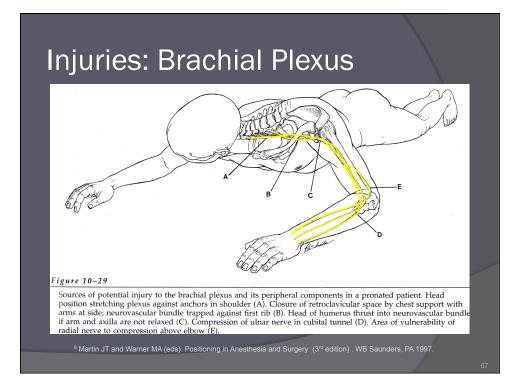
 Post hoc analysis demonstrated statistically significant improved mortality in the more hypoxemic subgroup and significant differences between subgroups using a range of PaO2/FiO2 thresholds up to approximately 140 mmHg.

Sud S, et al. Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. Intensive Care Med, 2010; 36: 585-599

Features of the RotoProne[™] Therapy System

- Rotation programmable in 1° increments
 - Allows customization of therapy
- Acclimation mode
 - Slow increase in degree of turn allows unstable patients to gradually become accustomed to therapy
- Pause and Hold functions
 - Facilitates nursing care
- Tube management system
 - Helps prevent line and tube dislodgement
- Electronically monitored buckles
 - Ceases rotation and alarms if buckles are not secured
- Ergonomically designed head positioning system
 - Adjustable for size and shape of patient
- OPR
 - Returns patient from prone to supine in < 40 seconds in the event of a code</p>


Adapted from KCI RotoProne slide-set with perm


Intensive Care Med (2011) 37:785-790 DOI 10.10076/00134-011-2180-x Cyril Charron Koceila Bouferrache Vincent Caille Samuel Castro Philippe Aegerter Bernard Page François Jardin Antoine Vieillard-Baron	ORIGINAL Routine prone position with severe ARDS: feas on prognosis		
Received: 2 September 2010 Accepted: 10 January 2011 Published online: 2 March 2011 © Copyright jointly held by Springer and ESICM 2011 C. Charron - K. Bouferrache - Y. Caille - S. Castro - B. Page - F. Jardin - A. Vielland-Banon (2c) Intensive Care Unit, University Hospital Paris Hed & France Ouset, University Hospital Paris Hed & France Ouset, University de Versailles Saint Quentin en Yvelines, 9, avenne Charles de Gaulle, 92104 Boulogne, France e- mail: antione: viellard-banon@@praphpfr Tel: +43-1-40095603 P. Agepter Department of Biostatistics and Clinical Research Unit, University Hospital Ambroise Parte, Faculté de Médecine Paris Hed & France Ouset, Université de Versailles Saint Quentin en Yvelines, Boulogne, France	Abstract Purpose: Since 1997, we have routinely used prone posi- tioning (PP) in patients who have a PaO ₂ /FiO ₂ below 100 mmHg after 24–48 h of mechanical ventilation and who are ventilated using a low stretch ventilation strategy. We report here the characteristics and prognosis of this subgroup of patients with severe lung injury to illustrate the feasibility, role, and impact of routine PP in acute respiratory distress syn- drome (ARDS). <i>Results:</i> A total of 218 patients were admitted because of ARDS between 1997 and 2009. Of these patients, 57 (26%) were posi- tioned prone because of a PaO ₂ /FiO ₂ /4 ± 10, below 100 mmHg after 24–48 h of mechanical ventilation. Age was 51 ± 16 years, PaO ₂ /FiO ₂ /4 ± 19, and PaCO ₂ 54 ± 10 mmHg. The lung injury score was 3.13 ± 0.15. Tidal volume was 7 ± 2 mLAg. PEEP 5.6 ± 12. cmH ₂ O. Prone	sessions lasted 18 h/day and 3.4 ± 1.1 sessions were required to obtain an FiO ₂ below 60%. The 60-day mortality was 19% and death occurred after 12 ± 5 days. The ratio between observed and predicted mortality was 0.43. In patients with a $P0_3/FiO_2$ below 60 mmHg, the 60-day mortality was 28%. Logistic regression analysis showed that among the 218 patients, PP appeared to be protective with an odds ratio of 0.35 [0.16–0.79]. Conclusion: We demonstrate the clinical feasibility of routine PP in patients with a PaO_3/ FiO ₂ below 100 mmHg after 24–48 h and suggest that, when combined with a low stretch ventilation strat- egy, it is protective with an days survival rate. Keywords ARDS - Prone position - Survival	

Complications

Other

- Compartment syndrome, Rhabdomyolysis
- Venous air embolism
- Visceral ischemia: pancreatitis
- Undiagnosed space occupying lesions

Complications

- Airway
 - Accidental extubation
 - Obstruction of ETT bloody secretions/ sputum plugs
 - Facial, Airway edema
 - Prolonged head low position, ↑ crystalloid infusion
 - Problems with extubation

Be Careful!

- Watch lines
- Watch for breakdown
- Watch cervical angles
- Wacth for plexus injuries
- Monitor pulmonary toilet
- THANK YOU!!