Respiratory Care for Specialized Pediatric Patients

ANDORA BASS, MD

PEDIATRIC CRITICAL CARE
BRENNER CHILDREN'S HOSPITAL
WAKE FOREST UNIVERSITY

Specialized Pediatric Patients

- Obesity
- Scoliosis
- Neuromuscular Diseases

Specialized Pediatric Patients

- Obesity
- Scoliosis
- Neuromuscular Diseases

Epidemiology

- 22 million children under 5 yo in US are overweight
- 31% of children and adolescents are overweight
- 16 % of adolescents are obese
- Pediatric obesity most common chronic disease of childhood

Body Mass Index (BMI) • [Weight ÷ (height x height)] x 703 • Overweight: 85 - 95%ile • Obese: > 95%ile • Adults: • 25-29 overweight • >30 obese

Healthcare economics

- 36% higher annual healthcare costs in US (obese vs non-obese individuals)
- Significant short-term and long-term health effects
- Psychosocial effects
- Indirect costs
 - o Loss of lives, productivity, and income

Physiologic changes

- Increased respiratory rates (Resp Phys Neurobio 2009;168)
 - o 15.3 − 21 bpm compared to 10 − 12 in normal subjects
- % of daily O2 consumption used for work of breathing
 - o 15% in morbidly obese vs 3% in normal subjects
- PFT changes

Effect of obesity on lung volumes

- FEV1 and BMI
 - o Inverse relationship
- FEV1
 - o Independent predictor of mortality
 - o Risk factor for CV disease, stroke, and lung cancer

Effect of obesity on lung volumes

- ◆ Expiratory reserve volume (ERV)
- ◆ Functional residual capacity (FRC)

Leads to microatelectasis in dependent lung zones

Lung compliance

Fat Distribution

- Abdominal fat displaces diaphragm into the abdomen and restricts descent of diaphragm
 - Limits lung expansion
 - o V/Q mismatch
 - × Dependent zones overperfused and underventilated
 - o Widening of A-aO2 gradient and possible arterial hypoxemia
- Waist-hip ratio and waist circumference

Work of breathing TABLE 5. Mechanical Work* of the Respiratory Muscles in Normal and Obese Subjects Subject Total Work Total Lung Normal .227\$.090 .039 .051 .050 *Mechanical work in kg-m/1.

Associated Morbidities

- Diabetes (NIDDM)
- Cardiovascular disease
- Stroke
- Dyslipidemia
- Hypercoagulability
- Gallstones
- Osteoarthritis
- Back pain
- Pregnancy complications
- Cancer

- Chronic obstructive pulmonary disease
- Asthma
- Obesity hypoventilation syndrome
- Pulmonary embolism
- Aspiration pneumonia
- Obstructive sleep apnea

Associated Morbidities

- Diabetes (NIDDM)
- Cardiovascular disease
- Stroke
- Dyslipidemia
- Hypercoagulability
- Gallstones
- Osteoarthritis
- Back pain
- Pregnancy complications
- Cancer

- Chronic obstructive pulmonary disease
- Asthma
- Obesity hypoventilation syndrome
- Pulmonary embolism
- Aspiration pneumonia
- Obstructive sleep apnea

Obesity and asthma

- Rates of asthma 2.5 x greater than 20 years ago
 - o 2 x # of overweight children
 - o 3 x # of overweight adolescents
- Obesity risk of asthma
 - OR 1.6 3 in various studies
- Dose-response relationship

Ann Int Med 1990;828-32

Obesity and asthma

- Obese children with asthma
 - o More dyspnea
 - o Greater risk of gastroesophageal reflux
 - o More asthma-related prescriptions and healthcare visits
 - More difficult to control

Int J Obesity 2010;34:599-605

Response to glucocorticoids in obese vs non-obese subjects

AJRCCM 2008;178(7):682-7

Obesity and sleep-disordered breathing

- 50-70% of pts with obstructive sleep apnea are obese
 - Fat deposition in pharynx
 - Reduced lung volumes
- 94% of obese children have abnormal sleep patterns

Sleep 1989;12:430-8

- Obesity Hypoventilation Syndrome
 - o Obesity, hypercapnea, sleep-disordered breathing
 - Respiratory drive affected by chronic resp acidosis
 - o Risk of pulm hypertension and right heart failure
 - o Underrecognized and underestimated

Effect of lung volume on pharyngeal collapsibility

Goal

- CPAP titration trial to assess the relationship between pharyngeal airway size / collapsibility and lung volume
- Obese OSA patients
 - o Studied during non-REM sleep
 - Rigid shell with ability to control extrathoracic pressure as a means to change lung volume
 - Epiglottic cathether to monitor flow-limitation (assess pharyngeal patency)

Perioperative and ICU management

Perioperative and ICU management

- 10 yo s/p T&A tonsillar bleed at home
- 100 kg, 5' 5" tall (BMI=37)
- Anesthesia intubation
- Airway evaluation and cauterization in OR
- Post-op sedation and analgesia

Perioperative and ICU management

- Fentanyl 4 mcg/kg/hr
- Precedex 1 mcg/kg/hr
- PRN paralytic
- Unplanned extubation following morning

Perioperative and ICU management

- Intubation and airway maintenance
- Anesthesia
- Atelectasis
- Deep venous thrombosis risk
- Procedures
- Extubation

Airway

- Anatomically difficult intubations
 - o Limited mouth opening
 - o ♥ neck mobility
 - o Mallampati

Airway

- Anatomically difficult intubations
 - Limited mouth opening
 - o **Ψ** neck mobility
 - Mallampati
- Maintaining airway prior to tube placement
 - **\Psi** FRC leads to **\Psi** O2 stores
 - o Atelectasis leads to impaired gas exchange
 - risk of aspiration due to gastroesophageal reflux
- Expertise and planning
- Rapid sequence intubation

Anesthesia and obesity

- Drug absorption, distribution, metabolism, and excretion all affected by obesity
- o Dosing by ideal body weight vs actual weight
- Larger anesthetic doses may be needed
 - o Larger doses or more frequent doses

Clin Pharm & Ther 2011;90:77-89

Atelectasis

- 16 yo admitted with status epilepticus
- 110 kg, 5' 7" (BMI=38)
- IBW 67 kg
- Intubated at outside ED
- Atelectasis on arrival
- SIMV/PRVC
 - TV 500, R 16, PEEP 8 (PIP 28)

Atelectasis

- 16 yo admitted with status epilepticus
- 110 kg, 5' 7" (BMI=38)
- IBW 67 kg
- Intubated at outside ED
- Atelectasis on arrival
- SIMV/PRVC
 - O TV 500, R 16, PEEP 8 (PIP 28)

Ventilation strategies

- Atelectatic dependent lung zones
 - o 45% of obese patients after abdominal surgery
 - o ↑ PEEP
 - Recruitment maneuvers

Ventilation strategies

- Atelectatic dependent lung zones
 - o 45% of obese patients after abdominal surgery
 - o ↑ PEEP
 - Recruitment maneuvers
- Esophageal pressure monitoring
 - Estimates pleural pressure
 - Higher PEEP may be needed to keep transpulmonary pressure positive → keeps alveoli open

CCM 2006;34(5):1389-94

Ventilation strategies

- Higher PEEP to combat atelectasis
- Tolerance of higher plateau (or peak) inspiratory pressures to assist with oxygenation
 - o Stiff chest wall → pleural pressure may be much greater than body surface pressure
 - Plateau (or peak) inspiratory pressures then overestimates the distending pressure transmitted to the alveoli

Comorbidities

- Deep venous thrombosis and pulmonary embolism
 - Hypercoagulable
 - **▼ ↑** Fibrinogen, factor VIII, and von Willebrand factor
 - Venous stasis
- Procedures more challenging
 - o Foley, venous access, etc

Extubation

- Sedation
- o Narrow upper airways
- o Edema
- o Impaired consciousness
- Reverse Trendelenburg position
 - o Improves end-expiratory lung volume and airway patency
- Non-invasive ventilation transition

Pediatric Pulmonology 46:1114-1120 (2011)

Non-Invasive Ventilation on a Pediatric Intensive Care Unit: Feasibility, Efficacy, and Predictors of Success

Christian Dohna-Schwake, MD, 1* Florian Stehling, MD, 1 Eva Tschiedel, MD, 1 Michael Wallot, MD, 2 and Uwe Mellies, MD 1

- Well-tolerated (73/74)
 - o Improved HR, RR, ABG, and O2 sats
 - o 23% required intubation for respiratory failure
- Transition post-extubation
 - o 19 of 74 patients
 - o Lower rate of NIV failure
- Early use for obese pts with acute resp failure
- Low threshold for use during extubation transition for obese pts

Respiratory Care for Obese Patients

- Differences during spontaneous respiration
- Incidence of asthma
- Difficulty with airway management / maintenance
- Prevalence of atelectasis
- Considerations during mechanical ventilation
- Role of NIV

Scoliosis

- Mild moderate scoliosis
 - Few respiratory signs/symptoms
- Moderate severe scoliosis
 - o **↓** TLC, VC, and FRC
 - o ↑ Vd / Vt (ratio of dead space to tidal volume)
- Higher curve ↑ lung compression on convex side
- Xray may not tell the whole story
 - o Rotational changes at thoracic level

Pulmonary effects

- V/Q mismatch
 - o Atelectasis on concave side
 - ↑ alveolar ventilation on convex side

 Long-standing atelectasis → lung atrophy and fewer pulmonary vessels

Neuromuscular Scoliosis

- Complication of any muscle weakness condition
 - More severe atelectasis due to muscle weakness
- More severe thoracic involvement
- Impaired clearance of airway secretions
 - Risk of chronic, recurrent aspiration and pneumonia

Long-term respiratory effects

- Untreated →
 - Chronic respiratory failure
 - o Cardiovascular compromise
 - Pulmonary hypertension

- Airway clearance (Vest, cough-assist device)
- NIV
- Chronic ventilation

Postoperative and ICU management

- Predictors of postoperative resp failure and inability to extubate
 - o Maximum inspiratory pressure (MIP) < 30 cm H2O
 - o FVC < 40%
- Significant blood loss (≥ 1/3rd blood volume)
 - Significant fluid resuscitation intraop and post-op
 - Pleural effusion ± pulmonary edema
- Significant pain
 - o Shallow breathing, resp insufficiency, more atelectasis

Neuromuscular diseases

Neuromuscular diseases

- Spinal muscular atrophy
- Duchenne muscular dystrophy
- Spinal cord injury
- Guillain-Barre syndrome
- Myasthenia gravis
- Multiple sclerosis
- Postpolio syndrome
- Lambert-Eaton myasthenic syndrome
- Amyotrophic lateral sclerosis

Pulmonary effects

- **♦** lung and chest wall compliance
 - Respiratory muscle weakness, including diaphragm
 - **V**C and tidal volume
- Compensation:
 - o ↑ resp rate; rapid and shallow
 - o Accessory muscle use
- Impaired cough
 - o weakness of abd and intercostal muscles, glottis weakness

Respiratory interventions

- American College of Chest Physicians recommendations:
 - Muscle strength training
 - Manual cough assist
 - Mechanical cough assist
 - o ↑MIP and MEP, ↑ peak inspiratory cough flow

Chest 2005;128:1524-30

Respiratory failure

- Maximum inspiratory pressure (MIP)
- Maximum expiratory pressure (MEP)
 - o followed as markers of resp muscle weakness
- Evidence of resp failure:
 - o VC < 20 ml/kg, MIP < 30 cm H20, MEP < 40 cm H20

Specialized pediatric patients

- Respiratory challenges
 - Abnormal respiratory baselines
 - Marginal respiratory status
- Preplanning and critical thinking
 - Adjust mindset
 - Device availability
- Multidisciplinary approach

